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Introduction



Machine Learning setting

• Given an empirical measure β,

• And a model αθ parametrized by θ.

Shape registration Supervised Learning Unsupervised Learning

• Then we optimize via GD & backpropagation a loss L

θ∗ ∈ argmin
θ
L(αθ, β).

Which loss L should we use to introduce a geometric prior
w.r.t. the data and compare weighted point clouds ?
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From discrete to continuous setting (and back)

Definitions

• Continuous function: f ∈ C(X )
• Positive measure: Linear form α ∈M+(X )
• Dual product: 〈α, f〉 =

∫
X f(x)dα(x) = Eα[f].

Discretizing measures

When α =
∑n

i=1 αiδxi one implements α on a computer with
(αi) ∈ Rn and (xi) ∈ Rn×d. Then functions are vectors
(fi) = (f(xi))i ∈ Rn and 〈α, f〉 =

∑
αifi.

Small Take home message
Some algorithms are better understood using a continuous
formalism.
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Prerequisites of Loss functions

We require that the loss verifies at least the following axioms:

• Positivity: ∀(α, β), L(α, β) ≥ 0.

• Definiteness: ∀(α, β), L(α, β) = 0⇔ α = β.

• Metrizing weak* convergence (convergence in law):

∀(α, β), L(α, β)→ 0⇔ α ⇀ β,

where α ⇀ β ⇔ ∀f ∈ C(X ), 〈α, f〉 → 〈β, f〉.
• Differentiability (for backpropagation).
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Csiszar divergences



Csiszàr divergences

Definitions [Csiszàr’67]

• Entropy ϕ: nonnegative, l.s.c., convex on R+ s.t. ϕ(1) = 0

• Recession constant: ϕ′∞ = limx→∞ ϕ(x)/x

• Lebesgue decomposition: ∀(α, β), α = dα
dββ + α>

• ϕ-divergence: Dϕ(α, β)
def.
=

∫
X ϕ(dα

dβ )dβ + ϕ′∞
∫
X dα>

→ Discretized: Dϕ(α, β) =
∑

βi 6=0 ϕ(
αi
βi
)βi + ϕ′∞

∑
βi=0 αi

Examples:

• KL: ϕ(x) = x log x− x + 1, ϕ′∞ = +∞,

• TV: ϕ(x) = |x− 1| and ϕ′∞ = 1.
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Properties of Csiszàr divergences

Consider the sequence αn = δ1/n and β = δ0. One has αn ⇀ β,
but KL(αn|β) =∞ and TV(αn|β) = 2.

α0 β α1 α2 α3

...

β

☺ Simple and cheap to compute

☹ Ignores the geometry and do not
metrize convergence in law
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Optimal Transport



Optimal Transport (OT)

Optimal Transport Distance

OT(α, β)
def.
= min

π≥0

{
〈π, C〉 :

π1 = α

π>1 = β

}
.

Called p-Wasserstein distance for C = dp.

Discrete: 〈π, C〉 =
∑

i,j πijCij

Intuition: Moving πij grams from xi to yj

costs πij × Cij = πij × C(xi, yj).

Choice of C → Choice of geometric prior.

⇒ Learn it !

[Kantorovich’42]
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Properties of OT

• One has OT(δx, δy) = C(x, y)

⇒ OT(δ1/n, δ0)
n→∞−−−→ 0

• Metric on X → metric onM+(X )

☺ Metrizes convergence in law

☹ Computation complexity O(n3 log n), not differentiable

☹ Only compares probabilities, i.e. normalized weighted point
clouds

9



Unbalanced Optimal Transport



Hybridizing Vertical and Horizontal Geometries

Vertical In between ? Horizontal
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Unbalanced optimal transport

Hybridizing ⇒ Soften the hard constraint π1 = α � ρDϕ(π1|α).

Allows for creation/destruction of mass locally.

Definition - Unbalanced OT [Liero, Mielke, Savaré ’18]
For any ϕ-divergence Dϕ and any measures (α, β) one defines:

OTρ(α, β)
def.
= inf

π≥0
〈π, C〉+ ρDϕ(π1, α) + ρDϕ(π2, β).

• Add a parameter ρ: Transport radius. (OTρ −−−−→
ρ→+∞

OT).

• Choice of Dϕ: prior on the mass variation dynamics

• Balanced OT is retrieved with Dϕ = ι(=)
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Examples of entropies

• Balanced: ϕ(x) = ι{1}(x) with Dϕ(π1, α) = ι(=)(π1, α).
• TV: ϕ(x) = |x− 1|
• KL: ϕ(x) = x log x− x + 1
• Power entropy: ϕ(x) = 1

p(p−1)(x
p − p(x− 1)− 1), p ∈ R.

• Range: ϕ(x) = ι[a,b](x) (a ≤ 1 ≤ b), i.e aα ≤ π1 ≤ bα.
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Numerical examples

Reminder: Local mass creation and destruction is allowed

• Shows how α is matched onto β and vice versa through π.
• Plots π1 ≈ α and π2 ≈ β

• Input marginals are dashed.
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Entropic Optimal Transport



Regularization of OT

Reminder: OT is computationally expensive and non-smooth

Idea: Add an entropic penalty εKL(π, α⊗ β)

Entropic Unbalanced OT [Cuturi’13, Chizat’18]

OTε(α, β)
def.
= inf

π≥0
〈π, C〉+ ρDϕ(π1, α) + ρDϕ(π2, β)

+ εKL(π, α⊗ β)
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Duality of regularized OT

Writing ϕ∗(x) = supy≥0 xy − ϕ(y), the dual reads

OTε(α, β) = sup
f,g∈C(X )

〈α, − (ρϕ)∗(−f)〉+ 〈β, −(ρϕ)∗(−g)〉

− ε〈α⊗ β, e
f(x)+g(y)−C(x,y)

ε − 1〉

The alternate dual ascent is straightforward to compute:

Alternate dual ascent
given any initialization f0C(X ). At time t one has (ft, gt).
Then

• Fix ft and find optimal g in the dual → gt+1,

• Fix gt+1 and find optimal f in the dual → ft+1,

• Iterate until convergence.
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Unbalanced Sinkhorn algorithm

Proposition - Unbalanced Sinkhorn algorithm
Define the following operators

• (Softmin / LogSumExp) Sminε
α (f) def.

= −ε log〈α, e−f/ε〉
• (Anisotropic Prox) aprox(p) = argminq∈R εe(p−q)/ε + ϕ∗(q)

The optimality condition defines the Sinkhorn algorithm
gt+1(y) = − aprox(−Sminε

α (C(., y)− ft) )

ft+1(x) = − aprox(−Sminε
β (C(x, .)− gt+1) ).

Theorem [S., Feydy, Vialard, Trouve, Peyre ’19]
The Sinkhorn algorithm converges towards the optimal (f, g)
of OTε(α, β) when ϕ∗ is strictly convex, but also for TV,
Range and Balanced OT.
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Examples of Anisotropic prox

• Balanced Sinkhorn = Softmin
• Unbalanced Sinkhorn = aprox ◦Softmin
⇒ Unbalanced Sinkhorn = Readjusting Balanced Sinkhorn

with the operator aprox.
• Sinkhorn algorithm is a (weakly) contractive algorithm
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Examples of Anisotropic prox - Balanced

Entropy and Aprox

Dϕ = ι(=)

ϕ(x) = ι{1}(x)
aprox(x) = x
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Examples of Anisotropic prox - KL

Entropy and Aprox

Dϕ = ρKL
ϕ(x) = ρ(x log x− x + 1)

aprox(x) = ρ
ρ+ε x
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Examples of Anisotropic prox - TV

Entropy and Aprox
Dϕ = ρTV

ϕ(x) = ρ|x− 1|
aprox(x) = x if x ∈ [−ρ, ρ], ρ if

x ≥ ρ and −ρ if x ≤ −ρ
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Correcting the entropic bias - Sinkhorn
divergence



Entropic bias

Problem: OTε does not metrize weak* convergence for ε > 0. ☹

∃α ∈M+
1 (X ),OTε(α, β) < OTε(β, β).

OT0(α, β)
0←ε←−−−OTε(α, β)

ε→∞−−−→ α>Cβ.

ε
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Main Theorem

Unbalanced Sinkhorn Divergence
Setting m(µ) to be the total mass of the measure µ, we define

Sε,ρ(α, β)
def.
=OTε,ρ(α, β)− 1

2OTε,ρ(α, α)− 1
2OTε,ρ(β, β)

+ ε
2(m(α)−m(β))2.

It extends the balanced case from [Ramdas ’15][Genevay ’18].

Theorem [S., Feydy, Vialard, Trouve, Peyre ’19]

For any Lipschitz cost C s.t. kε
def.
= e−

C
ε is a positive universal

kernel, for any ε > 0 and strictly convex ϕ∗

• Sε,ρ is convex, positive, definite.

• It is (weakly) differentiable.

• Sε,ρ(α, β)→ 0⇔ α ⇀ β.
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Numerics - Balanced Gradient Flow

• Model: αθ =
∑n

i=1 αiδxi with θ = (xi)

• Loss: Sε with balanced OT and ε = 0.01
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Numerics - Unbalanced Gradient Flow

• Model: αθ =
∑n

i=1 αiδxi with θ = (xi, αi)

• Loss: Sε with KL UOT and (ε, ρ) = (0.01, 0.3)
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Numerics - Avoiding overfitting

• Model: αθ =
∑n

i=1 αiδxi with θ = (xi)

• Loss: Sε with balanced OT and ε = 0.01
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Numerics - Avoiding overfitting

• Model: αθ =
∑n

i=1 αiδxi with θ = (xi)

• Loss: Sε with KL UOT and (ε, ρ) = (0.01, 0.3)

Unbalanced OT allows to avoid overfitting of outliers !
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Implementation

• Sinkhorn divergences can be fastly computed via
GPU-friendly routines

+ Efficient optimization heuristics (annealing + subsampling)

• Available losses (Balanced + KL) on Jean Feydy’s
repository:

http://www.kernel-operations.io/geomloss/
• Two modes:

• Keops backend for huge measures without overflow (∼1
million points)

• Mini-batch mode for machine learning.

• Implementation of other unbalanced divergences at:
https://github.com/thibsej/unbalanced-ot-functionals
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Conclusion

• Family of parametric losses with appealing properties
(convexity, differentiability, positivity...)

• Algorithm with linear convergence

• Consistent behavior which allows to crossvalidate w.r.t. ε

• Improvement of the statistical complexity (Not detailed
here)

It remains to experiment new ML applications!

http://www.kernel-operations.io/geomloss/
https://github.com/thibsej/unbalanced-ot-functionals
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