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Introduction



Machine Learning setting

e Given an empirical measure f3, .

e And a model gy parametrized by 6.
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Shape registration Supervised Learning Unsupervised Learning
e Then we optimize via GD & backpropagation a loss £
0" € arg m@in L(ag, B).

Which loss £ should we use to introduce a geometric prior

w.r.t. the data and compare weighted point clouds ?



From discrete to continuous setting (and back)

Definitions

e Continuous function: f € C(X)
e Positive measure: Linear form o € M+(X )

e Dual product: (o, f) = [, f(x E.[f].

Discretizing measures

When a = )" | aidy, one implements « on a computer with
(o) € R* and (x;) € R*™9. Then functions are vectors

(fl) = (f(Xi))i € R™ and <C¥, f> = Zaifi.

Small Take home message

Some algorithms are better understood using a continuous

formalism.



Prerequisites of Loss functions

We require that the loss verifies at least the following axioms:

e Positivity: V(«, 8), L(a, 8) > 0.
e Definiteness: Y(«, ), L(a,8) =0< a = 8.

e Metrizing weak™® convergence (convergence in law):
Y(e, B), L(a,8) > 0 & a— B,

where o — 8 & Vf € C(X), («, f) — (B, {).
e Differentiability (for backpropagation).



Csiszar divergences



Csiszar divergences

Definitions [Csiszar’67]
e Entropy ¢: nonnegative, l.s.c., convex on Ry s.t. ¢(1) =0
e Recession constant: ¢/ = limy_,o0 p(x)/x
e Lebesgue decomposition: Y(«, ), a = ggﬁ +al
e o-divergence: Dy(a, ) = fxcp )dB + ¢ [ daT
— Discretized: Dy(av, 8) = 325,40 @(E)Bi + "> 50

Examples:
o KL: p(x) =xlogx —x+ 1, ¢'*° = 400,
o TV: ¢(x) = |x — 1| and ¢/ = 1.




Properties of Csiszar divergences

Consider the sequence oy, = 91/, and 8 = dp. One has o, — 8,
but KL(ay|B) = 0o and TV (ay|B) = 2.
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© Simple and cheap to compute
® Ignores the geometry and do not

metrize convergence in law
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Optimal Transport (OT)

Optimal Transport Distance

def. . =
OT(w,B) = il {<7T, C) : :Tl :aﬂ }

Called p-Wasserstein distance for C = dP.

Discrete: (m, C) =3, ; miG

Intuition: Moving 7j; grams from x; to y;
costs mjj x Cjj = mjj x C(xi,yj)-

Choice of C — Choice of geometric prior.

= Learn it !

[Kantorovich’42]
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Properties of OT

e One has OT(dx, dy) = C(x,y)
n—oo

= OT(51/H,50) —0

e Metric on X — metric on M (X)

© Metrizes convergence in law
® Computation complexity O(n3logn), not differentiable

® Only compares probabilities, i.e. normalized weighted point
clouds



Unbalanced Optimal Transport




Hybridizing Vertical and Horizontal Geometries

Vertical In between ? Horizontal
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Unbalanced optimal transport

Hybridizing = Soften the hard constraint 71 = o = pDy(71|v).
Allows for creation/destruction of mass locally.

Definition - Unbalanced OT |Liero, Mielke, Savaré 18|

For any ¢-divergence D, and any measures («, 5) one defines:

OTP(av 5) déf. 7:_2%<7T, C> + pDQO(ﬂ-l) Oé) + pD(,O(ﬂ-Q) 5)

e Add a parameter p: Transport radius. (OT, i oT).
p——+oo
e Choice of Dy: prior on the mass variation dynamics

e Balanced OT is retrieved with D, = L(=)
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Examples of entropies

e Balanced: op(x) = t(13(x) with Dy(m1, @) = ¢(=)(71, @).

o TV: p(x) = |x - 1]
o KL: p(x) =xlogx—x+1
e Power entropy: (x) = m(Xp —p(x—1)—1),peR.

Range: ¢(x) = ([o,p)(%) (2 <1< D), ie aa < m < ba
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Numerical examples

Reminder: Local mass creation and destruction is allowed

e Shows how « is matched onto 8 and vice versa through .
e Plots 7 = o and m =~
e Input marginals are dashed.

Input Marginals Balanced KullbackLeibler

TotalVariation

PowerEntropy
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Entropic Optimal Transport




Regularization of OT

Reminder: OT is computationally expensive and non-smooth

Idea: Add an entropic penalty eKL(7, o ® /)
Entropic Unbalanced OT [Cuturi’13, Chizat’18]

OT.(ov, ) = inf (7, C) + pDy(m1, @) + pDy (2, )

+ eKL(m, a ® B)
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Duality of regularized OT

Writing ¢*(x) = supy>o Xy — ¢(y), the dual reads

OTe(a, 8) = sup (o, — (pp)" (1)) + (B, —(pv)"(—8))
f,geC(X)

)+e(y)—C(x.y)

f(x
—e{a®p, e c - 1)

The alternate dual ascent is straightforward to compute:
Alternate dual ascent
given any initialization foC(X'). At time t one has (f;, gt).
Then

e Fix f; and find optimal g in the dual — g1,

e Fix gi11 and find optimal f in the dual — fiy 1,

e [terate until convergence.

15



Unbalanced Sinkhorn algorithm

Proposition - Unbalanced Sinkhorn algorithm

Define the following operators

def.

e (Softmin / LogSumExp) Smin®, (f) = —¢log(a, e~1/¢)
e (Anisotropic Prox) aprox(p) = arg minger gelP=a)/e 1 p*(q)

The optimality condition defines the Sinkhorn algorithm
ge+1(y) = — aprox( —Smin?, (C(.,y) — f;))
fi1(x) = —aprox( —Sminj (C(x,.) — g+1) )-

Theorem [S., Feydy, Vialard, Trouve, Peyre '19]
The Sinkhorn algorithm converges towards the optimal (f, g)

of OT.(«, 8) when ¢* is strictly convex, but also for TV,
Range and Balanced OT.

16



Examples of Anisotropic prox

e Balanced Sinkhorn = Softmin
e Unbalanced Sinkhorn = aprox oSoftmin
= Unbalanced Sinkhorn = Readjusting Balanced Sinkhorn
with the operator aprox.

e Sinkhorn algorithm is a (weakly) contractive algorithm

— Balanced
KL

1 — RGs.2

—_—TVv

—— Hellinger

24— Berg

-aprox(-p)
o

17



e,
L
O
=

—

e

1
o
o
—
oF
O

o=
o
o
=

+~
©)
0

o
S

()
@)
99}
)

—
Q
—
=
<

=

Entropy and Aprox

—~
PR
—_ —
~ || o
S~ g
o E £
@__M ©
—~~
Ax s @
(a
SY
1 g
z ¢ g H T e |

18



Examples of Anisotropic prox - KL

Entropy and Aprox

= D, = pKL
. p(x) = p(xlogx —x+1)

aprox(x) = ﬁ X

o3 KullbackLeibler

aprox-p)
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Examples of Anisotropic prox - TV

Entropy and Aprox

D, = pTV

p(x) = plx =1
aprox(x) =x if x € [—p, p], p if
x>pand —pif x < —p

TotalVariation
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Correcting the entropic bias - Sinkhorn

divergence




Entropic bias

Problem: OT. does not metrize weak* convergence for ¢ > 0. @

Ja € M (X),0T(a, B) < OT(B, B).
OTo(e, B) <<= 0T.(a, B) <=2 a7 CB.
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Main Theorem

Unbalanced Sinkhorn Divergence

Setting m(u) to be the total mass of the measure p, we define

def.

Sa,p(aa /B) = OTE,p(aa B) - %OTa,p(aa 04) - %OTE,,D(57 5)
+ 5(m(a) — m(B))*.

It extends the balanced case from [Ramdas ’15]|Genevay ’18|.
Theorem [S., Feydy, Vialard, Trouve, Peyre '19]
For any Lipschitz cost C s.t. k. =% isa positive universal
kernel, for any € > 0 and strictly convex ¢*

e 5., is convex, positive, definite.

e It is (weakly) differentiable.

o Scp(,f) 20 a—p.
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Numerics - Balanced Gradient Flow

e Model: ag = > 11| aidy, with 6 = (x3)
e Loss: S; with balanced OT and ¢ = 0.01

t=0.00 t=025 t =050

t=1.00 t=2.00
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Numerics - Unbalanced Gradient Flow

e Model: ag = > | aidy, with 6 = (xi, o)
e Loss: S. with KL UOT and (¢, p) = (0.01,0.3)

t=0.00 t=025 t =050

t=1.00 t=2.00 t = 5.00, elapsed time: 0.08s/it
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Numerics - Avoiding overfitting

e Model: ag = > 11| aidy, with 0 = (x;3)
e Loss: S; with balanced OT and ¢ = 0.01
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Numerics - Avoiding overfitting

e Model: ag = > 11| aidy, with 6 = (x3)
e Loss: S. with KL UOT and (¢, p) = (0.01,0.3)

Unbalanced OT allows to avoid overfitting of outliers !
26



Implementation

+

Sinkhorn divergences can be fastly computed via
GPU-friendly routines

Efficient optimization heuristics (annealing + subsampling)

Available losses (Balanced + KL) on Jean Feydy’s
repository:
http://www.kernel-operations.io/geomloss/
Two modes:
e Keops backend for huge measures without overflow (~1
million points)

e Mini-batch mode for machine learning.

Implementation of other unbalanced divergences at:
https://github.com/thibsej/unbalanced-ot-functionals
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Conclusion

Family of parametric losses with appealing properties

(convexity, differentiability, positivity...)

Algorithm with linear convergence

Consistent behavior which allows to crossvalidate w.r.t. e

e Improvement of the statistical complexity (Not detailed

here)

It remains to experiment new ML applications!

http://www.kernel-operations.io/geomloss/
https://github.com /thibsej/unbalanced-ot-functionals
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