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Introduction



Machine Learning setting

e Given an empirical measure f3, .

e And a model gy parametrized by 6.
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Shape registration Supervised Learning Unsupervised Learning

e Then we optimize via GD & backpropagation a loss £

0" € arg m@in L(ag, B).

Which loss £ should we use to compare probability measures 7



Desired properties of the loss and examples

Desired properties of L:
e Positive, definite and convex

e Metrizes the weak* convergence

an — a < Vi e C(X), [fda, — [fda.
e Differentiable

Possible losses between measures:
e Csiszar divergences (KL, TV, Hellinger, etc...)
e Maximum mean discrepancies / kernel norms

e Optimal transport distances



Entropic bias

OT issues: non-smooth + complexity + curse of dimensionality

OT.(a,8) = inf (m, C)+eKL(m, a® B)
TeU(a,B)

Problem: OT. does not metrize weak* convergence for ¢ > 0. @

3o € MF(X),0T(a, B) < OT<(B, B).

= Debias: S.(a, 8) = OTc(a, 8) — $0T.(a, @) — 20T(8, B)



Unbalanced OT



Goal of Unbalanced OT

Mitigate between vertical and horizontal geometries on X.

+ avoids normalizing data and geometric outliers.

Vertical (Csiszar) In between ? Horizontal (OT)



Csiszar divergences

Definitions |Csiszar’67|

e Entropy ¢: nonnegative, l.s.c., convex on Ry s.t. ¢(1) =0
e Recession constant: ¢’ = limy_ o p(x)/x

e Lebesgue decomposition: V(a, 6) a = dﬁﬁ +al

e o-divergence: Dy(a, ) = L o(52 3)dB + ¢ [, da’

Examples:
o KL: p(x) =xlogx —x+ 1, ¢'*° = 400,
o TV: p(x) =|x— 1| and ¢/* = 1.




Examples of entropies

e Balanced: op(x) = t(13(x) with Dy(m1, @) = ¢(=)(71, @).

o TV: p(x) = |x - 1]
o KL: p(x) =xlogx—x+1
e Power entropy: (x) = m(Xp —p(x—1)—1),peR.

Range: ¢(x) = ([o,p)(%) (2 <1< D), ie aa < m < ba




Entropically regularized Unbalanced OT

Entropic Unbalanced OT [Chizat’18|

OT. ,(a, B) def 712%(77, C) + pDy(71, ) + pDy (72, B)

+ eKL(m, a ® B)

choice of C and Dy, = priors on geometry and mass dynamics



Numerical examples (¢ = 0)

Reminder: Local mass creation and destruction is allowed

e Shows how « is matched onto 8 and vice versa through .
e Plots 1 ~ a and m =

e Input marginals are dashed.

Input Marginals Balanced KullbackLeibler

TotalVariation Range PowerEntropy
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Sinkhorn divergence




Unbalanced Sinkhorn Divergence

Definition

Setting m(u) to be the total mass of the measure p, we define

Sz (@, 8) EOTe (0, B) — 30Te p(a, @) = 30T (8, )
+ 5(m(a) — m(B))*.
It extends the balanced case from [Ramdas ’15]|Genevay ’18|.

Impact of KL: entropic bias 4+ mass bias (m(7) — m(a ® 3)).
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Bound on the Sinkhorn divergence

Proposition

Assuming ¢* strictly convex, denoting k. & o= and f, and
gg the optimal symmetric potentials of OT.(c, &) and
OT.(B, B) respectively, one has

fo &
Sep(er, ) > llaes — Be=|IF,.
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Main Theorem

Theorem [S., Feydy, Vialard, Trouve, Peyre '19]

of. _C . » .
For any Lipschitz cost C s.t. k. e <isa positive universal
kernel, for any € > 0 and strictly convex ¢*

e 5., is convex, positive, definite.
o It is (weakly) differentiable.

e Scp(,8) 20 a—p.

Berg’s Theorem: e~ /¢ positive kernel < —C positive kernel.
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Sinkhorn algorithm




Duality of regularized OT

Writing ¢*(x) = supy>o Xy — ¢(y), the dual reads

OTcp(e, B) = sup (a, —(pp)" (1)) + (B, —(pp)"(—2))
f,geC(X)

)+e(y)—C(x.y)

f(x
—ela®p, e c —1)
Proposition - Unbalanced Sinkhorn algorithm
Define the following operators

def.

e (Softmin / LogSumExp) Smin®, (f) = —¢log(a, e~f/%)
e (Anisotropic Prox) aprox(p) = arg minger ce(P~9/¢ 4 *(q)

The optimality condition defines the Sinkhorn algorithm
gi+1(y) = — aprox( —Smin?, (C(.,y) — f;))
fi11(x) = —aprox( —Sminj (C(x,.) — gt+1) )-
14
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Examples of Anisotropic prox - KL

Entropy and Aprox

= D, = pKL
. p(x) = p(xlogx —x+1)

aprox(x) = ﬁ X

o3 KullbackLeibler

aprox-p)
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Examples of Anisotropic prox - TV

Entropy and Aprox

D, = pTV

p(x) = plx =1
aprox(x) =x if x € [—p, p], p if
x>pand —pif x < —p

TotalVariation
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Stability of Softmin and Aprox

Proposition
One has for any (f,g) € C(X)

[Sming, (f) — Sming, (g)| < [If — gl - (1)
||aprox,« (f) — aprox- (g)|| . < IIf — gl - (2)

= The algorithm is numerically stable. If there exists a fixed
point and compactness, the algorithm then converges linearly

towards it.
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Convergence of Sinkhorn algorithm

Assume either:
e " strictly convex and dp* goes to zero or 400 as x goes to

0 or +oc0.

e The entropy corresponds to Balanced, TV or Range.

Theorem - Existence and convergence

Assume C is Lipschitz on a compact space X'. Then:

1. The space of dual potentials can be restricted to a
relatively compact set, thus there is existence of dual
maximizers in C(X).

2. The Sinkhorn algorithm converges towards fixed points

which are dual maximizers.
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Numerical illustrations - Gradient flows




Numerical experiments model

Setting adapted from [Chizat '19].

e Position/mass parameterization x = {(x;,1;);} € (RY x R)®
e Model measure x — a(x) = > ' 14y,
e Cone metric {(x1,11), (X2,12)) (x,r) = B (X1, X2)x + M T1T2

e Flow Vx(t) = —VXSQP(OZ(X)HB)

Updates of the coordinates

t+1) = Xl(t) — anXiS€7p(a(t)7 B)7 (3)
t+1) _ ri(t)' exp ( _ 277xvri S€7p(a(t)7 ﬁ)) (4)
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Plots - debiasing effect

OT.-KL i &
(10-3,0.3) ‘_A@;#’ Q,.f/
Se,p-KL
(1073,0.3)
Se,p-KL
(1072,0.3)
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Plots - With other entropies

Se,o-TV
(1073,0.1)

Sc,»-RG

(1073,[0.7,1.3])
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Conclusion

Family of parametric losses with appealing properties

(convexity, differentiability, positivity...)

Algorithm with linear convergence, compatible with GPU

Consistent behavior which allows to crossvalidate w.r.t. e

e Improvement of the statistical complexity, dampening of

the curse of dimensionality (Not detailed here)

http://www.kernel-operations.io/geomloss/
https://github.com /thibsej /unbalanced-ot-functionals
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